

1.	$81^{\frac{3}{2}} = (81^{\frac{1}{2}})^3 = 9^3 \text{or} 81^{\frac{3}{2}} = (81^3)^{\frac{1}{2}} = (531441)^{\frac{1}{2}}$ $= 729$ $(4x^{-\frac{1}{2}})^2 = 16x^{-\frac{2}{2}} \text{ or } \frac{16}{x} \text{or equivalent}$ $x^2 (4x^{-\frac{1}{2}})^2 = 16x$	M1 A1 (2) M1 A1 (2) (4 marks)
2.	(i) $n = -2$ (ii) $n = 3$	B1 1 B1 1
	(iii)	M1 $\sqrt{4^3}$ or $64^{\frac{1}{2}}$ or $\left(4^{\frac{1}{2}}\right)^3$ or $\left(4^3\right)^{\frac{1}{2}}$ or
	$n=\frac{3}{2}$	$4 \times \sqrt{4}$ with brackets correct if used A1

		A correct attempt to deal with the		
(a)	$8^{\frac{1}{3}} = 2$ or $8^5 = 32768$	$\frac{1}{3}$ or the 5.	M1	
(a)	$8^3 = 2$ or $8^3 = 32768$	$8^{\frac{1}{3}} = \sqrt[3]{8}$ or $8^5 = 8 \times 8 \times 8 \times 8 \times 8$	IVII	
	(5)	$8^3 = \sqrt[4]{8}$ or $8^5 = 8 \times 8 \times 8 \times 8 \times 8$		
	$\left(8^{\frac{5}{3}} = \right) 32$	Cao	A1	
	A correct answer with no			
	Alterr			
	$8^{\frac{5}{3}} = 8 \times 8^{\frac{2}{3}} = 8 \times 2^2 = N$ = 32			
				(2)
(b)		One correct power either 2^3 or $x^{\frac{3}{2}}$.		
	$\left(2x^{\frac{1}{2}}\right)^3 = 2^3 x^{\frac{3}{2}}$	$\left(2x^{\frac{1}{2}}\right) \times \left(2x^{\frac{1}{2}}\right) \times \left(2x^{\frac{1}{2}}\right)$ on its own	M1	
		is not sufficient for this mark.		
		M1: Divides coefficients of x and		
	$8x^{\frac{3}{2}}$ 2	subtracts their powers of x.	D. 61 . 1	
	$\frac{8x^{\frac{3}{2}}}{4x^2} = 2x^{-\frac{1}{2}} \text{ or } \frac{2}{\sqrt{x}}$	Dependent on the previous M1	dM1A1	
		A1: Correct answer		
	Note that unless the power of x im	plies that they have subtracted their		
	powers you would need to see evide	ence of subtraction. E.g. $\frac{8x^{\frac{1}{2}}}{4x^2} = 2x^{\frac{1}{2}}$		
	would score dM0 unless you see son for the pe			
	Note that there is a misconception th	at $\frac{\left(2x^{\frac{1}{2}}\right)^3}{4x^2} = \left(\frac{2x^{\frac{1}{2}}}{4x^2}\right)^3$ - this scores 0/3		
		, ,		(3
				[5

(i)	m=4	B1	1	May be embedded
(ii)	$6p^2 = 24$ $p^2 = 4$	M1		$(\pm)6p^2 = 24$ or $36p^4 = 576$
	p=2	A1		
	or $p = -2$	Al	3	
(iii)	$5^{2n+4} = 25$	M1		Addition of indices as powers of 5
	$\therefore 2n+4=2$	M1	3	Equate powers of 5 or 25
	n = -1	A1	7	

5	3 (i) $\frac{12(3-\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})}$	MI		Multiply numerator ar	nd denom by 3	-√5			
	$=\frac{12(3-\sqrt{5})}{9-5}$	AI		$(3+\sqrt{5})(3-\sqrt{5}) = 9$	-5				
	$=9-3\sqrt{5}$	Al	3						
	(ii) $3\sqrt{2} - \sqrt{2}$ $= 2\sqrt{2}$	M1 A1	2	Attempt to express √	8 as k√2				
6	(a) 6√3	(a = 6)			Bl	(1)			
	(b) Expanding $(2-\sqrt{3})^2$ to	get 3 or 4 separate terms			M1				
	7, −4√3	(b=7, c=-4)			A1, A1	(3)			
	(a) ±6√3 also scores B1.				_	4			
	(b) M1: The 3 or 4 terms m	ay be wrong.							
	1st A1 for 7, 2nd A1 for	1^{st} A1 for 7, 2^{nd} A1 for $-4\sqrt{3}$.							
	Correct answer 7 – 4√3								
	$7 + 4\sqrt{3}$ with or without	$7 + 4\sqrt{3}$ with or without working scores M1 A1 A0.							
	Other wrong answers w								

7		$+\sqrt{7}(2-\sqrt{7}) +\sqrt{7}(2-\sqrt{7})$	M1	27/27/	ltiply numerator and denominator by
		$\frac{9 - 6\sqrt{7}}{4 - 7} \\ -3 + 2\sqrt{7}$	A1 A1 A1 4	Nur	merator correct and simplified nominator correct and simplified
8	(a)	$\frac{7+\sqrt{5}}{3+\sqrt{5}} \times \frac{3-\sqrt{5}}{3-\sqrt{5}}$	MI	1	Multiply by $\frac{3-\sqrt{5}}{3-\sqrt{5}}$ or $\frac{\sqrt{5}-3}{\sqrt{5}-3}$
		Numerator = $21+3\sqrt{5}-7\sqrt{5}-(\sqrt{5})^2$ Denominator = $9-5=4$	ml B1		Condone one slip $16-4\sqrt{5}$ (Or $5-9=-4$ from other conjugate)
	(b)	$Answer = 4 - \sqrt{5}$ $\sqrt{45} = 3\sqrt{5}$	A1 B1	4	cso
	N	$\frac{20}{\sqrt{5}} = \frac{20\sqrt{5}}{5}$	M1	12	May score if combined as one expression Must have 5 in denominator
		$Sum = 7\sqrt{5}$ Total	Al	7	

7	Mo	5 ethod 1	$x\sqrt{8} + 10 = \frac{6x}{\sqrt{2}}$ $\times \sqrt{2} \Rightarrow x\sqrt{16} + 10\sqrt{2} = 6x$ $4x + 10\sqrt{2} = 6x \Rightarrow 2x = 10\sqrt{2}$ $x = 5\sqrt{2}$	or $a = 5$ and	<i>b</i> = 2	M1,A1 M1A1 (4)
	Me	5 ethod 2	$x\sqrt{8} + 10 = \frac{6x}{\sqrt{2}}$ $2\sqrt{2}x + 10 = 3\sqrt{2}x$ $\sqrt{2}x = 10 \Rightarrow x = 0$	$\frac{10}{\sqrt{2}} = \frac{10\sqrt{2}}{2}$	$\frac{\overline{2}}{2}$, = $5\sqrt{2}$	M1A1 M1,A1 (4)
10	(a)	$\frac{5+\sqrt{7}}{3-\sqrt{7}}$	$\frac{7}{7} \times \frac{3+\sqrt{7}}{3+\sqrt{7}}$	M1		
		Nume	rator = $15 + 5\sqrt{7} + 3\sqrt{7} + 7$	ml		Condone one error or omission
		Denor	minator = 9 - 7 (= 2)	B1		Must be seen as the denominator
			(Answer =) $11 + 4\sqrt{7}$	Al	4	
	(b)	(2√5	$\int_{0}^{2} = 20$ or $(3\sqrt{2})^{2} = 18$	В1		Either correct
			their $\left(2\sqrt{5}\right)^2 - \left(3\sqrt{2}\right)^2$	M1		Condone missing brackets and x ²
			$(x^2 = 20 - 18)$			$x^2 = 2 \Rightarrow Bl, Ml$
			$(\Rightarrow x =) \sqrt{2}$	Al	3	$\pm\sqrt{2}$ scores A0 Answer only of 2 scores B0, M0 Answer only of $\sqrt{2}$ scores 3 marks
			Tota	d	7	

	1					
11	(a)	$b^{2}-4ac < 0 \Rightarrow$ $4^{2}-4(p-1)(p-5)$ $0 > 4^{2}-4(p-1)(p-5)$ $4^{2} < 4(p-1)(p-5)$	5 < 0 or $(0.5) < 0$ or $(0.5) < 0$ or $(0.5) < 0$ or $(0.5) < 0$ or	M1: Attempts to use $b^2 - 4ac$ with at least two of a , b or c correct. May be in the quadratic formula. Could also be, for example, comparing or equating b^2 and $4ac$. Must be considering the given quadratic equation. Inequality sign not needed for this M1. There must be no x terms. A1: For a correct un-simplified inequality that is not the given answer	M1A1	
		$4 < p^2 -$	6n+5	100 W 101 PT 121 W 101 W 101		
		p^2-6p		Correct solution with no errors that includes an expansion of $(p-1)(p-5)$	A1*	
					(3)	
	b)	$p^2 - 6p + 1 = 0 \Longrightarrow$	> <i>p</i> =	For an attempt to solve $p^2-6p+1=0$ (not their quadratic) leading to 2 solutions for p (do not allow attempts to factorise – must be using the quadratic formula or completing the square)	M1	
		$p = 3 \pm \sqrt{8}$	$p = 3 \pm 2\sqrt{2}$ $p = \frac{6 \pm \sqrt{3}}{2}$ Discrimina	A1		
		Allow the M1A1 to score anywhere for solving the given quadratic				
		$p < 3 - \sqrt{8}$ or		M1: Chooses outside region – not dependent on the previous method mark A1: $p < 3 - \sqrt{8}$, $p > 3 + \sqrt{8}$ or equivalent e.g. $p < \frac{6 - \sqrt{32}}{2}$, $p > \frac{6 + \sqrt{32}}{2}$	M1A1	
		A correct solution to	the anadr	ratic followed by $p > 3 \pm \sqrt{8}$ scores M1A1M0A	0	
		A correct solution to		$ scores M1A0$		
		Allow condidates to "	VII.X1000 V2000 - 1	than p but must be in terms of p for the final	A1	
	-	Anow candidates to u	se a rather	than p but must be in terms of p for the final	(4)	
	:				(7 marks)	

8 (i)	$x = \frac{8 \pm \sqrt{(-8)^2 - (4 \times -1 \times 5)}}{-2}$	Ml	Correct method to solve quadratic
	$=\frac{8\pm\sqrt{84}}{-2}$	AI	$x = \frac{8 \pm \sqrt{84}}{-2}$
	$=-4-\sqrt{21}$ or $=-4+\sqrt{21}$	A1 3	Both roots correct and simplified
(ii)	$x \le -4 - \sqrt{21}$, $x \ge -4 + \sqrt{21}$	MI	Identifying $x \le$ their lower root, $x \ge$ their higher root
		A1 2	$x \le -4 - \sqrt{21}$, $x \ge -4 + \sqrt{21}$ (not wrapped, no 'and')
(iii)		B1 B1	Roughly correct negative cubic with max and min (-4, 0)
		B1 B1	(0, 20) Cubic with 3 distinct real roots
		B1 5	Completely correct graph
		10	

		3					
13	(a)	$(k-2)^2 - 4 \times (2k-7)(k-3)$		Ml		discriminant – condone one slip –condone omission of brackets	
		$k^2 - 4k + 4 - 4(2k^2 - 6k - 7k + 21)$		A1		-condone offission of brackets	
		"their" $-7k^2 + 48k - 80 \ge 0$		В1		real roots condition; $f(k) \ge 0$	
		$7k^2 - 48k + 80 \leqslant 0$		Alcso	4	must appear before final line AG (all working correct with no missing brackets etc)	
	(b)	$7k^2 - 48k + 80 = (7k - 20)(k - 4)$		M1		correct factors	
		critical values are 4 and $\frac{20}{7}$		Al		(or roots unsimplified) $\frac{48 \pm \sqrt{64}}{14}$ accept $\frac{56}{14}$, $\frac{40}{14}$ etc here	
		y		MI		sketch or sign diagram including values	
		$\frac{20}{7}$ 4				$\frac{20}{7}$ 4	
		$\frac{20}{7} \leqslant k \leqslant 4$ Take their final line as their answer		Alcao	4	fractions must be simplified here	
			Total		8		
			TOTAL		75		
14		$= x^2$ $x^2 + 3k - 1 = 0$	M1*			stitution to obtain a quadratic or into 2 brackets each containing x^2	
	(4)	(k-1)(k+1) = 0	M1 dep	Co	Correct method to solve a quadratic		
	k =	$=\frac{1}{4} \text{ (or } k=-1)$	A1				
	**	1	MI			o square root to obtain x	
	X =	$=\pm\frac{\pi}{2}$	A1		and n	o other values	
				5			
				2			

<u> </u>	vel Year 1: Algebra & Functions	
15	$y = x^{\frac{1}{2}}$	
	$2y^2 - 7y + 3 = 0$	M1* Use a substitution to obtain a quadratic or
	(2y-1)(y-3)=0	factorise into 2 brackets each containing $x^{\frac{1}{2}}$ M1depCorrect method to solve a quadratic
	$y = \frac{1}{2}, y = 3$	A1
	-	M1 Attempt to square to obtain x
	$x = \frac{1}{4}, x = 9$	A1
		SR If first M1 not gained and 3 and ½ given as final answers, award B1
16	Let $y = x^{\frac{1}{3}}$ $3y^2 + y - 2 = 0$	*M1 Attempt a substitution to obtain a quadratic or factorise with $\sqrt[3]{x}$ in each bracket
	(3y-2)(y+1) = 0	DM1 Correct method to find roots
	$y = \frac{2}{3}, y = -1$	A1 Both values correct
	$x = \left(\frac{2}{3}\right)^3, x = (-1)^3$	DM1 Attempt cube of at least one value
	$x = \frac{8}{27}, x = -1$	A1 ft 5 Both answers correctly followed through SP. If M1* not awarded P1 x = 1 from T & I
		SR If M1* not awarded, B1 $x = -1$ from T & I
17	$5(i)$ $5(x^2+4x)-8$	B1 $p=5$
	$=5[(x+2)^2-4]-8$	B1 $(x+2)^2$ seen or $q=2$
	$=5(x+2)^2-20-8$	M1 $-8-5q^2$ or $-\frac{8}{5}-q^2$
	$=5(x+2)^2-28$	A1 4 $r = -28$
	(ii) $x = -2$	B1 ft 1
	(iii) $20^2 - 4 \times 5 \times -8$	MI Uses $b^2 - 4ac$
	= 560	A1 2 560
	(iv) 2 real roots	B1 1 2 real roots

18	$5x^2 + px$	$x-8 = 5(x-1)^{2} + r$ $= 5(x^{2} - 2x + 1) + r$		B1 4	q = 5 (may be embedded on R)	HS)		
	p = -10 $r = -13$	$= 5(x^{2} - 2x + 1) + r$ $= 5x^{2} - 10x + 5 + r$	4 5		p = -10 -8 = $\pm q + r$ or $\frac{-p^2}{20} - 8 = r$			
				A1 /	·=-13		Allow from $p = 10$	
19	$2x^{2}-5x-18(=0)$ A1 Correct: $(2x-9)(x+2)(=0)$ M1 Correct: $x = \frac{9}{2}, x = -2$ A1 x values $y = \frac{25}{2}, y = 32$ A1 5 y values 5 SR If A			s correct s correct A0 A0, one	te x or y dratic (not necessarily all in one side) solve quadratic correct pair of values, rect factorisation www B1	Condone poor algebra If x eliminated: $y = 2(\frac{26 - y}{3} - 2)^{2}$ Leading to $2y^{2} - 89$		
20	(i)	$2x^{2} - 3x - 5 = \frac{-10x - 11}{2}$ $4x^{2} + 4x + 1 = 0$ $(2x + 1)(2x + 1) = 0$ $x = -\frac{1}{2}$ $y = -3$		*M1 A1 DM1 A1 A1 [5]	Substitute for x/y or attempt to get equation in 1 variable only Obtain correct 3 term quadratic – be a multiple e.g. $2x^2 + 2x + 0.5 =$ Correct method to solve resulting quadratic	could 0 3 term If x is eliming $k(8y^2 + 48y^2)$ SC If DM0 B1 for x va	$2x^{2} - 3x - 5) + 11 = 0$ mated, expect $x + 72 = 0$ and $x = -\frac{1}{2}$ spotted lue, B1 for y value ag only one root	
	(ii)	Line is a tangent to the curve		B1√	Must be consistent with their an to their quadratic in (i). 1 repeated root – indicates one po Accept tangent, meet at, intersect, etc. but do not accept cross 2 roots – indicates meet at two po 0 roots – indicates do not meet. Daccept "do not cross"	bint. touch ints	ough from their solution	

	CI I	ear I: Aigebra & Functi	10113					
21	(a)	8-6x > 5-4x-8			M1		multiplyin	g out correctly and > sign used
	()	11 > 2x			02000			6
			. 11)					
		$x < 5\frac{1}{2}$ (or	$x < \frac{1}{2}$		Alcso	2	accept 5.	5 > x OE
	(b)	$2x^2 + 5x - 12 \geqslant 0$						
		(x+4)(2x-3)			M1		correct fac	
								insimplified) $\frac{-5 \pm \sqrt{121}}{4}$
		Critical values are -4 ar	$\frac{3}{2}$		Al		both CVs	correct; condone $\frac{6}{4}$, $-\frac{16}{4}$ etc
			-				here but m	nust be single fractions
		\ y†	,		MI		sketch or s	sign diagram including values
			/					+ - +
		4 / 2	. x					-4 $\frac{3}{2}$
		Α.						
		$x \le -4, \ x \ge \frac{3}{2}$			Al	4	fractions n	nust be simplified
		take their final line as th		AI	4	condone use of OR but not AND		
		Time inch Julia line us i	icii unanci	Tot	tal	6		
00	45							
22	(3x	+1)(x+3)	M	11	or $3(x + 1/3)(x + 1/3)$	3)		
					or for -1/3 and -3 found as endpoints eg by use of formula			4
	x <	-3	A	I I	use of formula			
	[or]		3.5	88				
	x >	-1/3 oe	A	1	mark final answers;			
					allow only A1 for	-3 > x > -	-1/3 oe as final	A0 for combinations with only one part
				answer or for $x \le -3$ and $x \ge -1/3$			correct eg $-3 > x < -1/3$, though this would earn M1 if not already awarded	
					if M0, allow SC1 for sketch of parabola the right way up with their solns ft their endpoints			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
			[3	3]				
							P	B . 10W 6
23	(i)	$-14 \le 6x \le -5$	MI	10	equations or inequality frms resulting in $a \le$			Do not ISW after correct answer if contradictory inequality seen.
		$-\frac{7}{3} \le x \le -\frac{5}{6}$	AI 3		14 and -5 seen www accept as two separate	inequalities	provided not	Allow $-\frac{14}{6} \le x \le -\frac{5}{6}$
	(II)			li	nked by "or" (must be	5)	100000000000000000000000000000000000000	Do not ISW after correct answer if contradictory
	(11)		MI	C	orrect method to find		ne andre	inequality seen.
		V 71V 71	MI	C	, -2 seen Correct method to solve	e quadratic i	nequality i.e. x >	
		x > 6, x < -2	A1 8		heir higher root, $x \le$ th not wrapped, strict ine			e.g. for last two marks, -2 > x > 6 scores M1 A0
	(ii)	$0 < x^2 - 4x - 12$ (x - 6)(x + 2) x > 6, x < -2	A1 M1	R C 6 C	carrange to collect all correct method to find , -2 seen correct method to solve	terms on on roots e quadratic is eir lower roo	nequality i.e. x >	Do not ISW aff inequality seen.

24	6(a).	P = 20x + 6 o.e	B1
	13.53.67	$20x + 6 > 40 \Rightarrow x >$	M1
		x > 1.7	A1*
			(3)
		Mark parts (b) and (c) together	
	(b)	$A = 2x(2x+1) + 2x(6x+3) = 16x^2 + 8x$	B1
		$16x^2 + 8x - 120 < 0$	M1
		Try to solve their $2x^2 + x - 15 = 0$ e.g. $(2x - 5)(x + 3) = 0$ so $x = 0$	M1
		Choose inside region	M1
		$-3 < x < \frac{5}{2}$ or $0 < x < \frac{5}{2}$ (as x is a length)	A1
	(c)		(5)
	49 0.09h	$1.7 < x < \frac{5}{2}$	B1cao
			(1)
1			(9 marks)

(a)	Correct shape with a single crossing of each axis	B1	
	y=1 $y=1$ $y=1$ labelled or stated	B1	
	x=3 labelled or stated	B1	(3)
(b)	Horizontal translation so crosses the x-axis at (1, 0)	B1	
	New equation is $(y =) \frac{x \pm 1}{(x \pm 1) - 2}$	M1	
	When $x = 0$ $y =$	M1	
	$=\frac{1}{3}$	A1	
			(4)

26	8		Horizontal translation – does not have to cross the y-axis on the right but must at least reach the x-axis.	B1	
	(a)	4	Touching at (-5, 0). This could be stated anywhere or -5 could be marked on the x-axis. Or (0, -5) marked in the correct place. Be fairly generous with 'touching' if the intention is clear.	B1	
			The right hand tail of their cubic shape crossing at (-1, 0). This could be stated anywhere or -1 could be marked on the x-axis. Or (0, -1) marked in the correct place. The curve must cross the x-axis and not stop at -1.	Bl	
			100	(3)	
	b)	$(x+5)^2(x+1)$	Allow $(x+3+2)^2(x-1+2)$	BI	
				(1)	
	(c)	When $x = 0$, $y = 25$	M1: Substitutes $x = 0$ into their expression in part (b) which is not $f(x)$. This may be implied by their answer. Note that the question asks them to use part (b) but allow independent methods.	M1 A1	
			A1: $y = 25$ (Coordinates not needed)]	
27	5 (i)	MI Negative max and	ic through (0, 0) (may have Must be continuous. Allow slight curve towards of away from y-axis at one end, but not both.		
		Cannot b	we reasonable rotational symmetry. be a finite "plot". Allow negative at origin. Correct curvature at both		
	(ii)	$y = -(x-3)^3$ M1 $\pm (x-3)^3$			
	AND IN COMPANY	$\mathbf{A1} \qquad 2 \text{or } y = 0$	$(3-x)^3$ Must have " $y =$ " for A ma SR $y = -(x-3)^2$ B1	ark	
	(iii)	Stretch B1 o.e. e.g.: scale factor 5 parallel to y-axis B1 o.e. e.g.: 2 axis.		factor" allow "vertically", "in the ept "in/on/across/up/along	

		Al	1021	vertex above x-axis in correct quadrant and parabola extending beyond y-axis
iii)	x	B1		y intercept = 7 stated or seen in table as y = 7 when x = 0 or 7 marked as intercept on y-axis (any graph) ∪ shape
(ii)	$x = -\frac{5}{2}$	Bl√	1	correct or ft " $x = -$ 'their' p "
	$\left(-\frac{5}{2}, \frac{3}{4}\right)$	Alcao	2	condone correct coordinates stated $x = -2.5$, $y = 0.75$
(i)	the contract have to contract	MI		or $x = -\frac{5}{2}$ cao found using calculus
	$(x+2.5)^2 + 0.75$ mark their final line as their answer	Al	3	
				$q = 7 - \frac{25}{4} = \frac{3}{4}$
	$q = 7 - \text{'their'} p^2$	MI		unsimplified attempt at $q = 7$ - 'their' p^2
	(i) (i)	$(x+2.5)^{2} + 0.75$ mark their final line as their answer (i) $x = -$ 'their' p or $y =$ 'their' q $\left(-\frac{5}{2}, \frac{3}{4}\right)$ (ii) $x = -\frac{5}{2}$	$(x+2.5)^{2} + 0.75$ mark their final line as their answer (i) $x = -$ 'their' p or $y =$ 'their' q $\left(-\frac{5}{2}, \frac{3}{4}\right)$ Alcao (ii) $x = -\frac{5}{2}$ Bl $$ M1 M1 M1	(i) $(x+2.5)^2 + 0.75$ mark their final line as their answer (i) $x = -$ 'their' p or $y =$ 'their' q $\left(-\frac{5}{2}, \frac{3}{4}\right)$ Alcao 2 (ii) $x = -\frac{5}{2}$ Bl $$ 1

29	(a)	$(a=) (1+1)^2 (2-1) = \underline{4}$ (1, 4)	or $y = 4$ is also acceptable	B1	(1)
	(b)		(i) Shape ✓ or ✓ anywhere Min at (-1,0) can be -1 on x-axis.	B1	
			Allow $(0,-1)$ if marked on the x-axis. Marked in the correct place, but 1, is B0.	B1	
		-1, 2	(2, 0) and (0, 2) can be 2 on axes	B1	
			(ii) Top branch in 1 st quadrant with 2 intersections	B1	
			Bottom branch in 3 rd quadrant (ignore any intersections)	B1	(5)
	(c)	(2 intersections therefore) 2 (roots)		B1ft	(1) [7]